UA Science Could Make Canola Oil More Nutritious, and Broccoli More Tasty

Rapeseed oil plants in Yuma, Arizona. (Photo by Eric Lyons)
Rapeseed oil plants in Yuma, Arizona. (Photo by Eric Lyons)

Genomics researchers of the University of Arizona's iPlant collaborative, housed in the BIO5 Institute, have helped unravel the genetic code of the rapeseed plant, most noted for a variety whose seeds are made into canola oil.

The findings will help breeders select for desirable traits such as richer oil content and faster seed production. Other potential applications include modifying the quality of canola oil, making it more nutritious and adapting the plants to grow in more arid regions.

In addition, they help scientists better understand how plant genomes evolve in the context of domestication. Brassica plants have been bred all over the world for centuries and resulted in produce and products diverse enough for supermarkets to place them across several different aisles.

Broccoli, cauliflower, Brussels sprouts, Chinese cabbage, turnip, collared greens, mustard, canola oil – all these are different incarnations of the same plant genus, Brassica.

"Whole-genome sequencing efforts like this one allow us to address two fundamental questions," said Eric Lyons, an assistant professor in the School of Plant Sciences at the University of Arizona College of Agriculture and Life Sciences, whose research team provides the software architecture for this and many other genome research projects. "How does the genetic information stored in the genome help us understand the functions of the organism, and what does the structure of the genome tell us about the evolution of genomes in general?"

The endeavor, which was led by institutions in France, Canada, China and U.S., revealed that the rapeseed (or Brassica napus) genome contains a large number of genes – more than 100,000 – due to the fact that it arose from a merger between two parent species, Brassica rapa (Chinese cabbage) and Brassica oleracea, a cultivar that includes broccoli, cauliflower, Brussels sprouts, collard greens and others.

The findings appear in the Aug. 22 issue of the journal Science and come at the heels of another international sequencing effort led by UA researchers, which revealed the complete genome of African Rice.

Read the rest of this August 25th, 2014 UANews article at the link below.

Date released: 
Aug 26 2014