

TAS-I Contribution to NASA Steckler Phase II UA-CEAC LGH Project G. Boscheri presented by C. Lobascio

NASA Steckler II Mid-term Review

87202587-BID-TAS-001

INTERNAL THALES ALENIA SPACE COMMERCIAL IN CONFIDENCE

Giorgio at work... now a TAS-I employee!

Page 2

NASA Steckler II Mid-term Review

Page 3

- TAS-I Background and Interests
- Contribution for Steckler I Phase
- Contribution for Steckler II Phase
- LGH Equivalent System Mass (ESM) Evaluation:
 - Introduction on ESM
 - ESM Evaluation for LGH
 - Comparison between LGH and Literature data
- Conclusions

NASA Steckler II Mid-term Review

There's Italy behind the ISS!

Image credit: NASA

The Italian Contribution

NASA

ThalesAlenia

NODE 2 HARMONY, October 23, 2007

ThalesAlenia

Humans in space... inspiring

Future: Human Exploration

Image credit: NASA

ThalesAlenia Need recycling and food production

TAS-I Contribution To Steckler I

G. Boscheri at UA-CEAC (Feb-Mar 2010)

Page 10

Build Collaborations

LGH HW Upgrade

LGH MEC Modeling

C. Lobascio received G. Giacomelli at TAS-I Recyclab

Build Collaborations

NASA Steckler II Mid-term Review

EDEN HW Upgrade

All rights reserved, 2012, Thales Alenia Space

TAS-I Contribution To Steckler I

Results Dissemination

ICES 2011: Steckler I Results

International Conference on Environmental Systems

Bio-regenerative Life Support Systems for Space Surface Applications

Agrospace WS 2010: Collaboration Build-up

Advances in Space Research: paper accepted in 2012 on modified plant growth model

Modified Energy Cascade Model adapted for a Multicrop Lunar Greenhouse Prototype

G. Boscheri^e, M. Kacira^a^{*}, L. Patterson^a, G. Giacomelli^a, P. Sadler^d, R. Furfaro^b, C. Lobascio^e, M. Lamantea^e, L. Grizzaffi^e

^eAgricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ, USA, mkacira@cals.arizona.edu, giacomel@ag.arizona.edu, lane12345@rocketmail.com, ^bSystems and Industrial Engineering, The University of Arizona, Tucson, AZ, USA, robertof@email.arizona.edu ^eThales Alenia Space Italia, Torino, Italy, giorgio.boscheri@external.thalesaleniaspace.com, cesare.lobascio@thalesaleniaspace.com,Matteo.Lamantea@thalesaleniaspace.com,

Lucia.Grizzaffi@thalesaleniaspace.com

^dSadler Machine Company, Tempe, AZ, USA, <u>SadlerMachineCo@aol.com</u>

*Corresponding Author

THALES

Page 11

NASA Steckler II Mid-term Review

July 19th 2012

INTERNAL THALES ALENIA SPACE COMMERCIAL IN CONFIDENCE

TAS-I Contribution to Steckler II

Upgraded EDEN for Tests

ThalesAlenia

All rights reserved, 2012, Thales Alenia Space

- Introduce space-oriented insight into LGH design
- LGH metric evaluations (ESM)
- Study liquid streams (e.g. condensate, etc.)
- **Upgrade Phase 1 Modified MEC predictive** model

July 19th 2012

COMMERCIAL IN CONFIDENCE

TAS-I Contribution to Steckler II

Page 13

NASA Steckler II Mid-term Review

INTERNAL THALES ALENIA SPACE COMMERCIAL IN CONFIDENCE

Equivalent System Mass (ESM)

Page 14

A Tool for Comparison of Advanced Life Support (ALS) Equipment

ALS Subsystem 1: Mass = 10 kg Volume = 15 L Power = 50 W

ALS Subsystem 2: Mass = 8 kg Volume = 30 L Power = 70 W

NASA Steckler II Mid-term Review

NASA Steckler II Mid-term Review

INTERNAL THALES ALENIA SPACE **COMMERCIAL IN CONFIDENCE**

Plant Growth Chamber ESM

Page 16

- Literature on Plant Growth Chamber budgets is poor
- Good reference: NASA BVAD
- Mass/Volume/Power/Crew Time per m²

Component	Mass [kg/m²]	Volume [m³/m²]	Power [kW/m²]	Thermal Energy Management [kW/m ²]	Crew- time [CM-h /m ² •y]	Logistics [kg /m²•y]	Reference
Crops	20.0	-	-	-	13.0		From Drysdale (1999b)
Shoot Zone	3.6	0.67	0.3 59	0.3 59	-	-	
Root Zone and Nutrients	36.8	0.11	0.14	0.14	TBD	TBD	
Lamps	22.9	0.25	2.1	2.1	0.027	0.57	
Ballasts	8.4	TBD	0.075	0.075	0.032	3.24	
Mechanization Systems	4.1	TBD	TBD	TBD	TBD	TBD	
Secondary Structure	5.7	-	-	-	-	-	
Total	101.5	1.03	2.6	2.6	13.1	3.81	

Plant Growth Chamber Equivalent System Mass per Growing Area

	A. J. Hanford, SIMA Deputy
PREPARED BY:	
	M. K. Ewert, SIMA Element Lead
APPROVED BY:	
	B. M. Lawson, ALS Project Manager
APPROVED BY:	

NASA Steckler II Mid-term Review

Table 4.2.3

1 of the 4 LGH modules ESM calculated (LGH1)

NASA Steckler II Mid-term Review

INTERNAL THALES ALENIA SPACE COMMERCIAL IN CONFIDENCE

ESM Calculation for UA-CEAC LGH

Page 18

Mass/volume/power of equipment outside of LGH1 module common to all 4 modules was considered per ¹/₄

NASA Steckler II Mid-term Review

PV POWER GENERATION

ESM Calculation for UA-CEAC LGH

Page 19

A mass/power cost factor of 62 kg/kW was applied as per BVAD, assuming PV solar energy

Data assumed for Lunar Surface Polar Site

A mass/cooling cost factor of 77 kg/kW was applied as per BVAD, assuming light weight radiators

NASA Steckler II Mid-term Review

THALES All rights reserved, 2012, Thales Alenia Space

NASA Steckler II Mid-term Review

INTERNAL THALES ALENIA SPACE

COMMERCIAL IN CONFIDENCE

NASA Steckler II Mid-term Review

Crew time equivalent mass not considered for the LGH ESM evaluation

NASA Steckler II Mid-term Review

July 19th 2012

ESM Comparison with literature data

Page 23

All rights reserved, 2012, Thales Alenia Space

NASA data from BVAD (not optimized food production unit)

LGH data calculated assuming 11.2 m² of crops (minimum from ICES 2011)

COMMERCIAL IN CONFIDENCE

ESM analysis: LGH system viable concept for space applications

ESM Evaluation results presented to ICES 2012

Next TAS-I Steckler II support activities to follow in agreement with UA-CEAC needs, depending on:

- Composter activity status
- Telepresence activity status
- Plants modeling activity status

We are enjoying the collaboration!

ESM Calculation for UA-CEAC LGH

Page 26

Main Considerations Summary:

- 1 of the 4 LGH modules ESM calculated (LGH1)
- Mass/volume/power of equipment outside of LGH1 module common to all 4 modules considered per ¹/₄
- Mass/power cost factor of 62 kg/kW applied as per BVAD, assuming Lunar polar site and PV solar energy
- Mass/cooling cost factor of 77 kg/kW applied as per BVAD, assuming Lunar polar site and light weight radiators
- Volume of equipment placed inside the LGH1 module not considered as additional equivalent mass, since mass/volume cost factor already covered by the mass of the LGH primary and secondary structures
- Mass/volume cost factor of 13.4 kg/m3 applied to equipment placed outside the LGH1 module as per BVAD, assuming Lunar surface site and inflatable unshielded primary structure (to be covered with regolith)
- Crew time equivalent mass not considered for the LGH ESM evaluation

NASA Steckler II Mid-term Review