Nutrient Management in Vegetable Crops

Dr. Tom Thompson

Dept. of Soil, Water, and Environmental Science

Presented at 14th Annual Desert Crops Workshop Holtville, CA 3 December, 2003

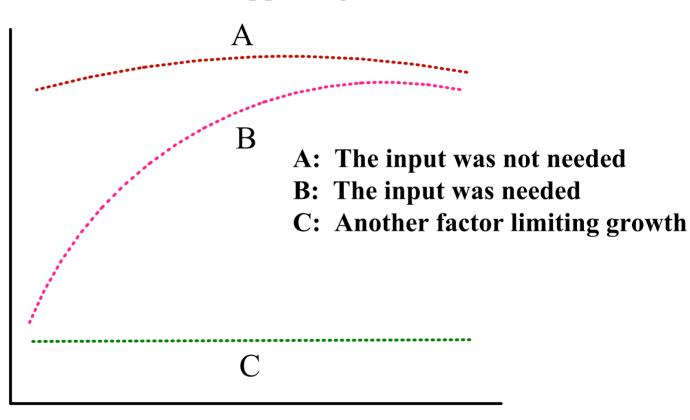
Objectives of Nutrient Management

- □ Optimize crop yield and quality
- □ Use inputs efficiently
 - Improve profits
 - Avoid pollution
- ☐ Improve soil quality and productivity

Keys for Successful Nutrient Management

- ☐ Identification of potential yield-limiting factors.
- □ If possible, control yield-limiting factors.
- □ Understand soil nutrient status.
- □ Understand plant nutrient demand.
- □ Use soil and tissue testing.

Yield-Limiting Factors


- □ Crop yield and quality will be limited by the most-limiting growth factor.
- □ Nutrients may not be the most-limiting factor:
 - Irrigation management
 - Salinity
 - Pests

Plant Response to Inputs

What's Happening here?

Amount of Input

Tools for Soil/Crop Management

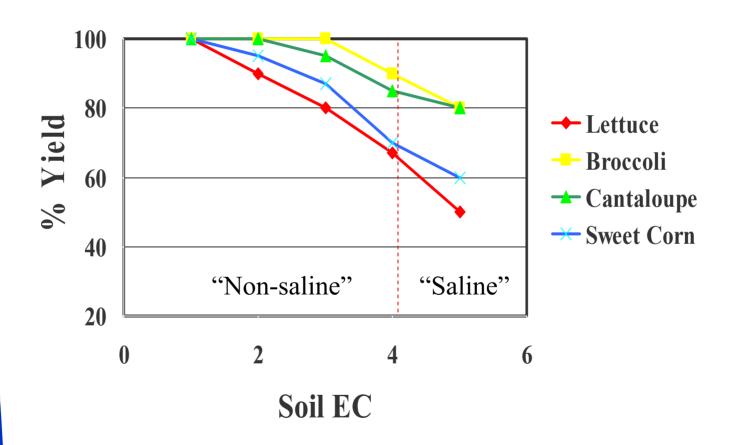
- □ Soil Knowledge
 - Soil pH, salts, sodium (potential limiting factors)
 - Available soil nutrients
 - Knowledge of soil variability
- □ Crop Knowledge
 - Salt tolerance
 - Nutrient requirements
 - Nutrient uptake pattern
 - Crop nutrient status from tissue tests

Soil Sampling and Testing

- □ Soil sampling and testing is an excellent way to evaluate potential yield-limiting factors.
- □ Soil sampling is most often used for:
 - determining pre-season soil fertility and other potential soil problems (e.g. pH, salinity, etc.)
 - evaluating a wide range of potential soil problems simultaneously.

Soil Sampling

- Soil samples should be collected in a random manner within areas that are approximately uniform with respect to soil properties and management history.
- □ Collect a minimum of 15-20 samples per uniform area. Composite the 15-20 samples to form one combined sample.
- □ Collect to a depth of 12"



Soil Tests

Lab#	pН	Calcium (Ca)	Magnesium (Mg) PPM	Sodium (Na)	Potash (K)	(Fe)	Zinc (Zn)	Manganese (Mn)	Copper (Cu)	Salinity (EC x K) dS/m	Nitrate Nitrogen (NO3-N) PPM	Phosphorus (Bicarb - Soluble P) PPM	Computed % Sodium	2004600000000000	
547	8.1	6300 VH	290 VH	420 VH	190 H	8.0 H	2.8 H	***************************************		3.8 H	18.0 M				PPM
548	8.2	6000 VH	240 H	550 VH	240 H	4.6 M	2.8 H				30.0 H				
549	8.2	6800 VH	270 VH	700 VH		3.1 M	.44 L	11.0 VH	THE REAL PROPERTY.		45.0 H			The second second	1.1 M
550	8.2	6600 VH	260 VH	860 VH		5.1 H	.56 L	14.0 VH	-					230 VH 250 VH	1.2 M

EC and Crop Growth

ESP

- □ Exchangeable Sodium Percentage
- ☐ A measure of sodium to calcium ratio on soil clays
- □ Interpretation
 - Soil ESP >8 is severe for clay loam to clay textures
 - Soil ESP >13 is severe for other soil textures
 - High ESP can result in poor water infiltration

Soil Variability

Salinity Distribution Pattern: 0-1 foot depth, MAC


ECe(0-1 foot) dS/m

- @ < 1
- 1 2.5
- 2.5 43 > 4

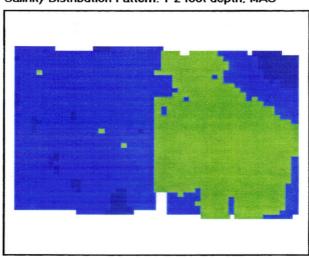
Data Bounds

X: min & max 407983.51 408357.5

Y: min & mex 3658978.71 3659228.23

Soil salinity (EC) with EM-38

Salinity Distribution Pattern: 1-2 foot depth, MAC


ECe(1-2 foot) dS/m

- *** < 1**
- 1 2.5
- 2.5 4
- > 4

Data Bounds

X: min & max 407983.51 408357.5

Y: min & mex 3658978.71 3659228.23

THE UNIVERSITY OF ARIZONA TUCSON ARIZONA

Soil Tests

Lab#	pН	Calcium (Ca)	Magnesium (Mg) PPM	Sodium (Na)	Potash (K) PPM	(Fe)	Zinc (Zn)	Manganese (Mn)	Copper (Cu)	Salinity (EC x K) dS/m	Nitrogen (NO3-N)	Soluble P)	% Sodium	(SO4-S)	
547	8.1	6300 VH	290 VH	420 VH		8.0 H	2.8 H		The same of the sa	3.8 H	PPM	PPM	(ESP)	PPM	PPM
548	8.2	6000 VH		550 VH	_	4.6 M	2.8 H		The state of the s						
	8.2	6800 VH								4.4 H			6.8	150 VH	1.1 M
				-	-	3.1 M	44 L	11.0 VH	.37 M	6.2 VH	45.0 H	6.4 L	7.7	230 VH	1.2 M
550	8.2	6600 VH	260 VH	860 VH	190 H	5.1 H	.56 L	14.0 VH	.55 M	7.4 VH	71.0 VH	7.1 L	9.5		The second division in which the second division is not a second division in the second div

Essential Plant Nutrients Needed as Fertilizers in Desert Soils

"Macro" nutrients "Micro" nutrients Nitrogen N Iron Phosphorus

Potassium K

Calcium Ca

Magnesium Mg

Sulfur

Red = usually Green = occasionally Black = seldom

Fe

Manganese Mn

Copper

Zn Zinc

Molybdenum Mo

Chlorine

B Boron

Nickel Ni

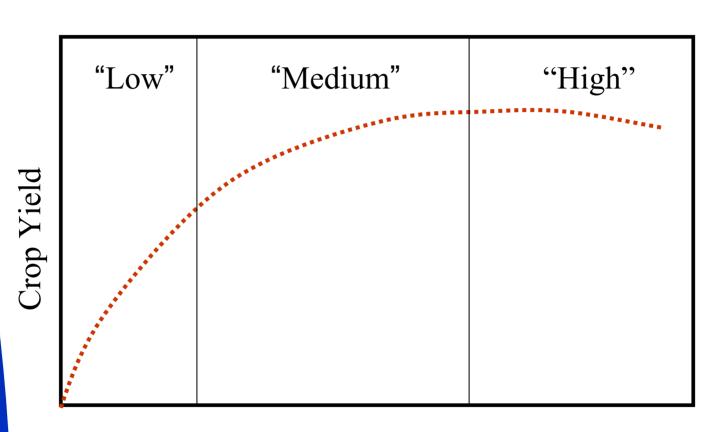
Measuring Nutrient Availability in Desert Soils

Nutrient

Soil Test

N 2M KCl extract

P 0.5 M NaHCO₃ extract


K Ammonium acetate ext.

B Hot water extraction

Fe, Mn, Cu, Zn DTPA extraction

Meaning of Soil Test Values

Available Soil Nutrient

Available Soil Nutrients

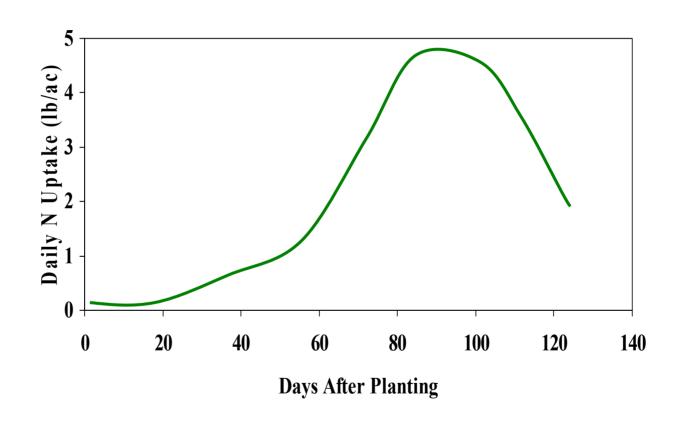
- □ Preplant available N
 - Due to mobility of N, take samples as close to planting
 - 0-10 ppm NO₃-N "Low"
 - High probablility of response to fertilizer
 - 10-20 ppm NO₃-N "Medium"
 - Moderate probability of response to fertilizer
 - >20 ppm NO₃-N "High"
 - Low probability of response to fertilizer

Available Soil Nutrients

- □ Preplant available P
 - 0-20 ppm "Low"
 - High probability of response to fertilizer
 - 20-40 ppm "Medium"
 - Moderate probability of response to fertilizer
 - >40 ppm "High"
 - Low probability of response to fertilizer
 - One preplant sample is usually sufficient

Micronutrient Soil Tests

From Western Fe	rtilizer Handbook	All values in ppm				
Nutrient	Low	Medium	High			
Fe	<5	5 – 15	>15			
Mn	<2	2 - 10	>10			
Cu	< 0.8	0.8 - 1.2	>1.2			
Zn	< 0.7	0.7 - 1.5	>1.5			
В	< 0.5	0.5 - 1.2	>1.2			



Crop Nutrient Uptake

Crop	Yield	N Uptake	P ₂ O ₅ uptake	K ₂ O uptake	
	Ctn/ac	lb/ac	lb/ac	lb/ac	
Lettuce	700	100	30	200	
Broccoli	500	175 - 225	45 - 60	110 - 140	
Cauliflowe r	750	200 - 250	65 - 85	300 - 370	

Cauliflower Nitrogen Uptake

Plant Tissue Testing

- □ Uses the plant as an index of nutrient availability
- □ Advantages:
 - Direct measurement of nutrient uptake
 - Same tissue test can be used across many soils
- □ Disadvantage:
 - Nutrient content is a function of all factors affecting plant growth

Tissue to Sample

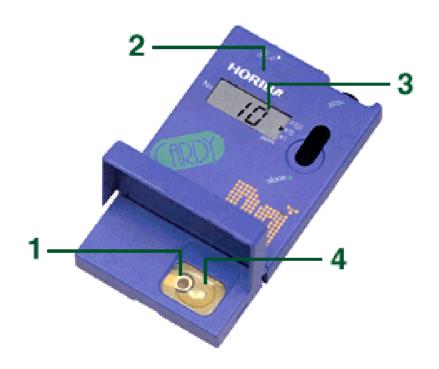
Vegetable Crops: Midribs and Petioles

Tissue Sampling for Vegetable Crops

- □ Petioles or midribs should be collected beginning at about the 4-6 leaf stage from the youngest fully-expanded leaf.
- □ Sample from >20 plants within uniform areas of the field.
- Avoid plants that are abnormally large or small, and diseased plants.
- □ Tissue samples are perishable--refrigerate or dry immediately.

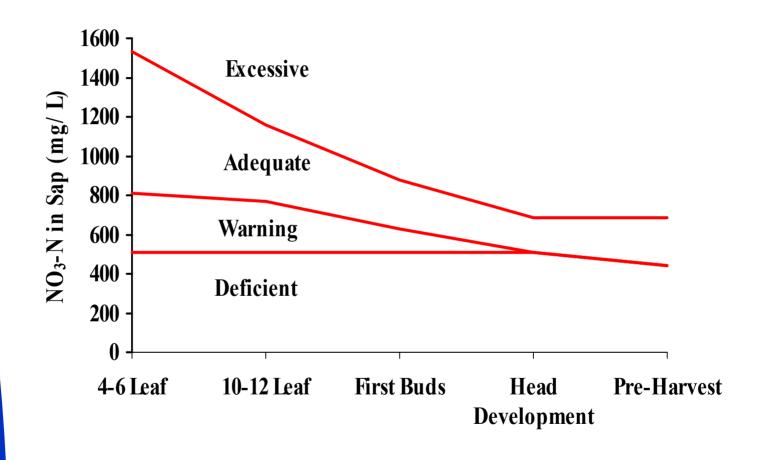
Standard Tissue Analysis

- ☐ Tissue Analysis usually involves several steps:
 - Sampling
 - Sample drying
 - Sample grinding
 - Sample extraction
 - Sample analysis
- □ Time from sampling to results is usually 2-3 days, delaying fertilization.

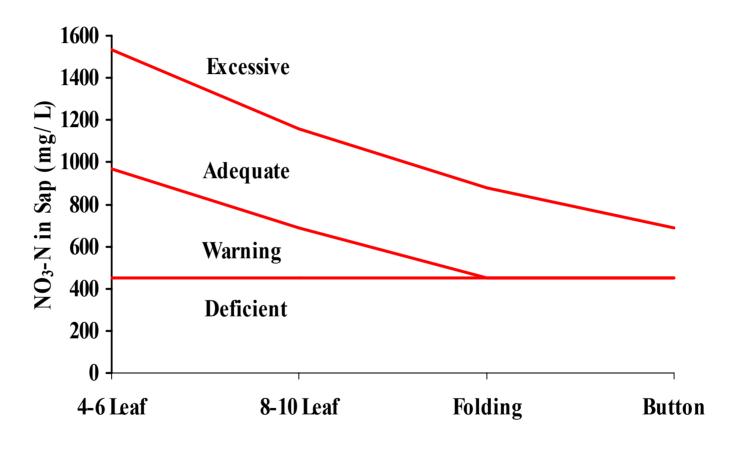


Sap Testing

- □ A method that can allow immediate determination of plant N or K status.
- □ Sample petioles in the same manner as for petiole analysis, and extract sap.
- □ Sap nitrate or potassium is measured on a hand-held, calibrated meter.
- □ Guidelines are available for some, but not all, crops.



Cardy Meter



NO₃-N in Broccoli Petiole Sap

NO₃-N in Cauliflower Petiole Sap

Sap Testing

- □ Quick plant sap tests are useful tools for monitoring plant N status. They will be most useful when:
 - Sap concentrations are monitored frequently
 - Combined with other evaluations of crop vigor

Summary—Steps for Good Nutrient Management

- □ Understand limiting factors to growth.
- □ Collect, analyze, interpret pre-season soil samples. Apply appropriate management practices.
- □ Understand soil variability.
- □ Collect and analyze in-season plant tissue samples to guide side-dress fertilizer applications or fertigations.

Questions?

Contact Tom Thompson at:

520-621-3670 or

thompson@ag.arizona.edu

Visit our subsurface drip irrigation website at:

http://ag.arizona.edu/azdrip

