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Abstract—LiDAR (Light detection and ranging) is a tool with potential for characterizing wildlife habitat 
by providing detailed, three-dimensional landscape information not available from other remote sensing 
applications. The ability to accurately map structural components such as canopy height, canopy cover, 
woody debris, tree density, and ground surface has potential to improve wildlife habitat models because 
animals interact and respond to three-dimensional habitat features. Prior to LiDAR, accurate measurements 
of structural features were difficult to obtain over large areas as other remote sensing data are based on two-
dimensional spectral responses. The Southwest harbors a large diversity of unique vegetation communities, 
each with an associated wildlife assemblage with various management needs. Managers can use LiDAR to 
accurately characterize vegetation and landscape structural characteristics for entire districts or management 
units. Data surfaces derived from the LiDAR point cloud can be readily incorporated into species-specific or 
multispecies habitat models. Although LiDAR has received much attention in characterizing forest structure, 
fewer studies (n = 29) have suggested or incorporated this technology to improve wildlife habitat models 
specifically. Herein we provide a review of current LiDAR applications in wildlife habitat models, provide 
future directions, and detail how LiDAR can increase our ability to represent the world that animals experience.

Introduction 
	 Managing landscapes for diversity and persistence of wildlife is de-
pendent on our understanding of vegetative, structural, physiographic, 
and bioclimatic needs of species and how these factors contribute to 
vital parameters such as growth, survival, and coexistence (Morrison 
and others 2006). Increasingly, managers are faced with the need to 
monitor, conserve, and predict a diversity of plant and animal species 
and their specific habitat requirements over broad spatial scales; scales 
at which ground-based sampling is cost prohibitive, or infeasible due 
to remoteness. The vegetative communities and associated faunas in 
the Madrean Archipelago are extremely diverse, and harbor many 
endemic and endangered species (Lasky and others 2011; Poulos and 
others 2007), requiring substantial monitoring efforts over large areal 
extents. To conserve and manage the unique biotic assemblages on 
state and federal lands within the Madrean Archipelago, improvement 
in inventory of species diversity, identification of habitat requirements 
for a variety of taxa—from arthropods to large mammals—identifica-
tion of areas of particular conservation importance, and continued 
monitoring of these areas to ensure species viability and probability 
of persistence would be beneficial.  

	 An important management tool is the ability to correlate the pres-
ence of a species with particular physiographic and vegetative features 
thought to be important components of the species’ habitat.  Many 
of these species-specific physiographic and vegetative features can 
be characterized with remote sensing data and, therefore, mapped 
over large areas to produce a habitat model (Lurz and others 2008).  
Habitat variables in such models are typically represented with remote 
sensing data obtained from passive sensors intercepting wavelengths 
of reflected light or heat from the earth’s surface.  These remote sens-
ing products are only capable of representing the complexity of the 
landscape in two dimensions and do not directly measure structure 
(Vierling and others 2008; Lefsky and others 2002), which limits our 
ability to accurately describe and predict wildlife-habitat relation-
ships.  Active sensor technologies, such as light detection and ranging 
(LiDAR), can improve wildlife habitat models by more accurately 
describing fine-scale, spatially explicit, three-dimensional structural 
features related to animal use, occurrence, and reproductive success 
(Vierling and others 2008) and measure these features across entire 
management units, mountain ranges, or districts (Reutebuch and 
others 2005).  
	 LiDAR data is generally collected from a laser-emitter scanner linked 
to an accurate global positioning system and inertial measurement 
unit (Reutebuch and others 2005); the resolution and quality of the 
data depends on both the scanner and the pulse density (Evans and 
others 2009; Reutebuch and others 2005).  LiDAR data can be broadly 
categorized into two classes depending on the type of sensor: large-
footprint wave-form data in which the pulse-return intensity over time 
is digitized, and small-footprint discrete return data (fig. 1) in which 
the spatial coordinates at which each laser pulse intersects an object 
are recorded (see Anderson and others 2005; Evans and others 2009; 
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Lefsky and others 2002; Reutebuch and others 2005; and Vierling and 
others 2008  for excellent reviews).  There are positives and negatives 
to each method (Evans and others 2009) and both provide unique 
structural information not available from spectral or thermal sensor 
technology and can greatly improve our ability to classify landscape 

features and describe how animals relate to them. Herein we provide 
a review of current LiDAR applications in wildlife habitat models.    

Methods

Literature Review and Synthesis

	 We conducted a search of published literature referenced in the Sci-
ence Citation Index via Thompson Reuters Web of Science, accessing 
all years through 30 March 2012. We used five search routines: (1) 
wildlife habitat AND LiDAR in “Title,” (2) habitat AND LiDAR in 
“Title,” (3) wildlife habitat in “Topic,” LiDAR in “Title,” (4) habitat 
in “Topic,” LiDAR in “Title,” and (5) habitat AND LiDAR in “Topic.” 
We tabulated the number of references returned in each search itera-
tion. We selected references relevant to studies of wildlife-habitat 
relationships for further review. For each selected reference, we 
summarized main objectives, methodology, main conclusions, and 
management implications either stated or implied. We also examined 
whether the study was taxa specific, whether LiDAR-derived variables 
were correlated with landscape features of interest and whether or not 
incorporation of LiDAR-derived variables enhanced or significantly 
improved predictions and classification. We compiled these data to 
identify current uses of LiDAR in habitat models, commonly utilized 
LiDAR-derived variables, and new ideas or emerging techniques.  

Results
	 Many studies refer to LiDAR as a tool potentially applicable to 
wildlife habitat assessment, monitoring, classification, and predic-
tion, as indicated by the substantial number of references returned 
via our most general search criteria (fig. 2; habitat AND LiDAR in 
“Topic,” n = 154), indicating the growing interest in and awareness 
of LiDAR technology. Relatively few references explicitly mention 
use of LiDAR in wildlife habitat applications (fig. 2; n = 18). How-
ever, a considerable subset of total references specifically address the 
applicability of LiDAR data to predict species presence, diversity, 
reproductive performance, or for creating variables that represent 
important structural features useful in wildlife habitat models. We 
reviewed 59 studies relating the use of LiDAR data to wildlife 
habitat characteristics and summarized some common research aims 
(table 1). The stated aims included assessment of LiDAR’s ability to 
identify or quantify organisms, predict species presence, diversity, 
or performance, and predict physical and vegetative characteristics 
associated with species presence.
	 Of the 59 publications that we reviewed, the majority (45 or 76%) 
assessed the predictive capability of LiDAR-derived variables relative 
to field-based measurements; of these, all but two reported significant 
relationships between LiDAR-derived and field-based measurements 
(table 1). Just over half (31 or 53%) of the publications focused on a 
particular species or group of organisms (e.g. breeding forest birds, 
tree species, forest spiders, fish communities). Of these, all but two 
publications focused on using LiDAR to describe important habitat 
characteristics, animal relationships to structural features, and pre-
dicting occurrence based on these structural affinities. Avian habitat 
relationships were the most common area of taxon-specific focus 
(table 1; 13 or 42%). We detected no use of the term “LiDAR” within 
publications from wildlife-specific journals such as The Journal of 
Wildlife Management or Wildlife Research.
	 Many LiDAR-derived variables are strongly correlated with stan-
dard, field-based habitat measures, allowing for accurate predictions 
at multiple spatial scales (table 2; Hyde and others 2005; Lefsky 

Figure 1—A visualization of discrete, multiple return LiDAR data: 
(A) LiDAR point cloud draped with georeferenced aerial imagery, 
(B) Height of LiDAR pulse returns above the ground showing all 
vegetation structure and density, (C) Height of LiDAR pulse returns 
≤2 meters above the ground showing shrub/sapling vegetation 
structure and density, (D) raster layer created from mean canopy 
height surface, 3 m pixel resolution.
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Figure 2—Number of published journal articles referencing LiDAR, habitat, and wildlife habitat 
returned from Web of Science search criteria including all years through 30 March 2012. 

Table 1—Summary of common research aims from 59 studies relating the use of LiDAR data to wildlife habiat characteristics

Stated aims	 # results	 % of stated aims	 Additional characteristics	  # studies

– Assess potential to identify or quantify organisms 			   Predictive?		  45
   based on structural association	 3	 3.3
– Assess potential to predict species performance	 3	 3.3	 Significant relationship between LiDAR
    based on structural associations			      data and variable of interest?		 43
– Assess potential to predict physical characteristics	 8	 8.7	 Incorporate spectral data?		  12
– Review or comment	 9	 9.8	 Improvement over spectral data alone?	 9
– Discuss applications	 11	 12.0	 Multiscale?		  10
– Assess potential to predict vegetation		
    characteristic	 17	 18.5	 Taxa specific?		  31
– Classification and mapping	 17	 18.5	 Taxa considered:
– Assess potential to predict species presence or		
    diversity based on structural associations	 24	 26.1		  amphibians	 1
	 	 		    reptiles	 1
Total aims	 92	 		  mammals	 2
				    arthropod	 4
				    fish	 4
				    plants	 6
				    birds	 13

and others 2002; Vierling and others 2008). Some variables, such as 
canopy cover, tree or vegetation height, and canopy volume within 
various height categories, were obtained directly from the point cloud 
or waveform intensity, whereas other LiDAR-derived variables are 
secondarily estimated based on the relationship between primary 
LiDAR metrics and plot-based measurements such as basal area, 
biomass, and leaf area index (table 2; Dubayah and others 2000; 
Lefsky and others 2002; Ruetebuch and others 2005; Vierling and 
others 2008).   Still other LiDAR-derived variables provide novel 
information that is difficult to obtain from field-based measurements 
such as highly accurate terrain models and secondarily derived metrics 
of slope, aspect, and rugosity (a measure of surface height variability).  

Information unique to LiDAR data includes measures of pulse-return 
intensity, which can be used to distinguish among live and dead trees 
(Bater and others 2009; Kim and others 2009) and identify ephemeral 
wetlands beneath forest canopy cover (Julian and others 2009), as 
well as vertical structural complexity and volume. Vertical structural 
complexity and volume can then be used to model fine-scale differ-
ences in canopy use within bird communities (Clawges and others 
2008), or specific nesting requirements of a single species (Goetz 
and others 2010).  Additionally, new variables may be developed for 
describing vegetative composition, complexity, and physiographic-
vegetative associations based on ratios, linear relationships, or other 
novel combinations, which may further refine our ability to describe 
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Table 2—Examples of LiDAR-derived metrics and applications for incorporating LiDAR variables in wildlife habitat models. Primary 
LiDAR metrics can be obtained directly from the LiDAR point cloud.   Secondary LiDAR derivatives must be modeled based on the 
relationship between primary metrics and ground-based training data. Referen ces include studies incorporating metrics and/or 
applications.

LiDAR-derived metric
Primary or 

secondary? Applications LiDAR method References
Canopy surface model Primary Height of trees or other features without 

terrain subtracted.  Depict elevation of 
canopy surface above sea level. 

Discrete return, 
waveform

Andersen and others 
2005; Graf and others 
2009

Canopy cover/closure Primary Produced from canopy surface model, 
important in habitat models for many 
bird and forest obligate species, but also 
those that prefer open areas

Discrete return, 
waveform

Dubayah and Drake 
2000; Lefsky and others 
2002; Hyde and others 
2005; Martinuzi and 
others 2009

Canopy/vegetation 
height model

Primary Height of trees or other features with 
terrain subtracted. Identify forest seral 
stages, habitat preferences for species 
with varying affinities for canopy, portions 
of the canopy, or stand age

Discrete return, 
waveform

Dubayah and Drake 
2000; Lefsky and others 
2002; Hyde and others 
2005; Graf and others 
2009

Canopy/vegetation 
profiles

Primary “ Waveform Dubayah and Drake 
2000; Lefsky and others 
2002; Goetz and others 
2010

Canopy base height Primary Identify inhabitable canopy area when 
subtracted from canopy height

Discrete return, 
waveform

Andersen and others 
2005

Canopy volume Primary Identify differences in canopy structure 
among forest age classes, distinguish 
among canopy structural affinities of 
various species

Waveform Lefsky and others 2002

Coefficient of variation 
vegetation height

Primary Identify forest seral stages and be used 
with field data to predict occurrence of 
snags and woody debris

Discrete return Bater and others 2009

Digital terrain model 
(DTM)

Primary Delineate streambeds, create 
very accurate DEM, slope, aspect, 
ruggedness layers

Discrete return, 
waveform

Reutebuch and others 
2003; Graf and others 
2009

Digital Elevation Model Primary Elevation and other interpolated surfaces: 
slope, aspect, rugosity commonly used in 
habitat models

Discrete return, 
waveform

Goetz and others 2010; 
Martinuzi and others 
2009

Foliage height diversity Primary Parse LiDAR vegetation returns within 
height intervals to estimate shrub or 
foliage density, important for ground 
nesting birds or other species that 
respond to foliage density at varying 
heights

Discrete return, 
waveform

Clawges and others 
2008; Martinuzi and 
others 2009

Return intensity Primary Distinguish between live and dead 
biomass as dead trees,vegetation, and 
water have low return intensity compared 
to live trees and vegetation

Discrete return Kim and others 2010

Standard deviation 
of vegetation height/ 
mean absolute deviation 
height

Primary Index of stand structural complexity, age, 
seral stage, used to identify snags

Discrete return, 
waveform

Graf and others 2009; 
Martinuzi and others 
2009

Vertical distribution of 
canopy structure

Primary Estimate above-ground biomass, identify 
forest seral stage

Waveform Dubayah and Drake 
2000; Goetz and others 
2010
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Above-ground biomass Secondary Provides an estimate of forage availability 
and, when combined with multispectral 
band information, forage quality

Discrete return, 
waveform

Dubayah and Drake 
2000; Lefsky and others 
2002; Hyde and others 
2005

Basal area Secondary Provides information on forest structure 
and density, an important variable in 
habitat models of forest-dwelling species

Discrete return, 
waveform

Dubayah and Drake 
2000; Lefsky and others 
2002

Canopy complexity/
diversity

Secondary Describes the vertical complexity of 
vegetation structure, important for 
arboreal species

Waveform Lefsky and others 2002; 
Goetz and others 2010

Diameter Breast Height 
(DBH)

Secondary Provides information on stand age, tree 
maturity could serve as a proxy for food 
or nest site availability

Discrete return, 
waveform

Dubayah and Drake 
2000; Lefsky and others 
2002

Leaf area index (LAI) Secondary Provides an estimate of forage availability 
and, when combined with multispectral 
band information, forage quality

Discrete return, 
waveform

Dubayah and Drake 
2000; Lefsky and others 
2002

Timber/vegetation 
volume

Secondary Identify habitable areas within tree or 
shrub cover

Discrete return, 
waveform

Dubayah and Drake 
2000; Clawges and 
others 2008

Vertical distribution ratio Secondary Differenctiate among areas with high 
and low understory canopy structure, 
important for species sensitive to 
understory vegetative cover

Waveform Goetz and others 2010

Table 2—Continued

important habitat features and predict presence of organisms on the 
landscape (Vierling and others 2008). Below, we briefly examine four 
application domains common to wildlife studies that have benefitted 
from incorporation of LiDAR-derived variables; we also provide a 
summary of LiDAR-derived variables applicable to studies of wildlife-
habitat relationships (table 2).  

Habitat Mapping

	 LiDAR’s ability to accurately characterize physical terrain and 
vegetative structure can contribute to landscape classification efforts 
(Lefsky and others 2002). Classification techniques often include 
classification and regression trees, machine learning algorithms such 
as Random Forest (Martinuzzi and others 2009), and image segmen-
tation via object based image analysis routines (Arroyo and others 
2010). Adding three-dimensional structure increases a classification 
routine’s ability to resolve among similar vegetative types and fine-scale 
physiographic features. When structural information such as canopy 
height, return intensity, and rugosity are combined with multispectral 
data from satellites like Landsat ETM, QuickBird, IKONOS (Arroyo 
and others 2010; Bradbury and others 2005; Clawges and others 2008) 
or hyperspectral data, classification accuracy is improved. With suf-
ficient training data, LiDAR can be used to accurately classify, map, 
and model important structural habitat variables over broad spatial 
scales (Bradbury and others 2005; Lefsky and others 2002). Result-
ing classifications or maps can then be incorporated into predictive 
models of species presence or use of an area (Graf and others 2009; 
Martinuzzi and others 2009).  

Predicting Pre sence or Use

	 The ability to predict an organism’s presence and monitor for its 
continued persistence is a central goal among land managers and 
wildlife biologists alike (Hyde and others 2005).  Because LiDAR 
data directly measures structural features that animals respond to (i.e. 
select for) at hierarchical spatial scales, LiDAR-based parameters have 
potential to improve the predictive capability of species distribution 
and probability of use models (Bradbury and others 2005; Seavy and 
others 2009). LiDAR-derived variables can be used to correlate fine-
scale structural associations measured in the field and map these over 
large spatial extents, indicating areas where a species or community 
is likely to be found.  For example, many species require dead trees 
(snags) for nesting (bluebirds, woodpeckers, and many tree squirrels), 
and may only use an area if such features are available.  LiDAR can 
be useful in identifying or predicting the presence of snags, either 
based on the tendency for older forest structural stages to harbor more 
woody debris (Bater and others 2009; Martinuzzi and others 2009), 
or by the change in the intensity of LiDAR pulse returns based on the 
amount of dead wood in a plot (Kim and others 2009).  Once maps of 
snag-class presence or absence were created for a single mountain, 
Martinuzzi and others (2009) used this information to predict the 
mountain-wide probability of use for several bird species based on 
their affinities for snags of particular sizes. 
	 Availability of preferred microclimates can allow species to per-
sist in otherwise extreme environments (Suggitt and others 2011). 
LiDAR’s ability to accurately map fine-scale topographic features 
has potential for creating variables based on species’ microclimate 
needs, and thermally important areas such as suitable sites for rearing 
neonates and likely locations for ectotherm burrows could be mapped 
at broad scales.
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Correlates of Habitat Quality

	 Defining and improving habitat quality are topics of considerable 
interest in the wildlife literature and major goals for efforts such as 
land management, conservation, restoration, and endangered species 
recovery. In reality, however, habitat quality is difficult to assess, es-
pecially with metrics meaningful to the organism of interest (Hinsely 
and others 2006). Because of the difficulty in measuring structurally 
complex landscapes, habitat quality is often inferred from measures of 
reproductive success within a defined area.  If reproductive success is 
strongly correlated with specific physiographic or vegetation structural 
features, then LiDAR can be used to define areas of predicted high 
reproductive success and habitat quality. LiDAR-derived metrics of 
canopy height were strongly correlated with mean chick body mass in 
Parus major over a 7-year study, and the direction of this relationship 
changed depending on springtime temperatures (Hinsley and others 
2006).  With this complicated interaction between climate, position in 
canopy, and nestling success established, it is conceivable that mean 
nestling mass and inferred habitat quality could be predicted annually 
over an entire forest based on LiDAR data and climate predictions. 

Correlates of Biodiversity

	 With the threat of climate change and associated disturbance events, 
there is an increased need for rapid biological assessments of state and 
federal lands to both inventory and monitor species diversity and focus 
conservation efforts on areas associated with high biodiversity (Bergen 
and others 2009; Lesak and others 2011). Structural complexity and 
heterogeneity in both vegetation and physiography are associated with 
higher levels of plant and animal diversity relative to less complex 
sites (Bergen and others 2009). Therefore, LiDAR-derived variables 
should aid in identifying areas of high biodiversity and in predicting 
biodiversity of certain species assemblages based on their structural 
affinities (Bergen and others 2009).   Forest dwelling beetle diversity 
and richness were correlated with LiDAR-derived measurements 
of elevation and tree height (Müller and Brandl 2009).  Songbird 
species richness in deciduous forests was related to LiDAR-derived 
measures of forest structure such as canopy and midstory height and 
midstory density, with intra-guild species diversity (e.g. ground vs. 
aerial foragers, edge vs. interior specialists) described by different 
forest structural metrics (Lesak and others 2011).

Discussion

Proven Tool

	 LiDAR technology has become increasingly accessible and afford-
able over the last 10-15 years and continues to improve, providing 
valuable datasets that can be used by resource managers toward 
a variety of applications, from forestry and watershed science, to 
wildlife conservation and management over large spatial extents 
(Lefsky and others 2002; Ruetebuch and others 2005; Vierling and 
others 2008). While not all LiDAR data is equal (Evans and others 
2009), it is evident that LiDAR technology and its various applica-
tions are no longer just theoretical. LiDAR technology has proven a 
useful tool when applied to many wildlife-habitat studies, and will 
continue to be refined. Every article we reviewed touted LiDAR’s 
ability to quantify (often accurately) landscape and aquatic structural 
features that organisms identify as habitat, to map fine scale habitat 
associations over large areas, and to improve predictive models of 
species presence, use, reproductive success, and overall biodiversity. 

Combining LiDAR and multispectral datasets allows for maximal 
exploration of species’ biotic and structural associations to more 
adequately represent the real world that animals inhabit and to which 
they respond.   

Promising Future

	 In the Madrean Archipelago, LiDAR data collection has begun for 
the Coronado National Forest, and LiDAR-derived metrics promise 
to improve forest inventory and monitoring efforts, including habitat 
assessment and modeling for a variety of wildlife species.  The sheer 
size and topographic and biotic diversity of national forests like the 
Coronado are representative of the challenges this vast and complex 
region poses in terms of conservation and management, and also 
represent an opportunity to demonstrate the benefits of incorporating 
LiDAR data to accurately describe, quantify, monitor, and conserve 
its great biological diversity and natural resources.
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